Colin Petitjean (Univ. Bourgogne Franche-Comté)

On Lipschitz maps which attain their norm

Let X be a Banach space and M be a metric space equipped with a distinguished point denoted 0. We consider $Lip_0(M,X)$ the space of Lipschitz maps $f: M \to X$ which satisfy f(0) = 0. Equipped with the norm $||f||_L$, being the best Lipschitz constant of f, $Lip_0(M,X)$ is a Banach space. We then say that a Lipschitz map $f \in Lip_0(M,X)$ strongly attains its norm whenever there is $x \neq y \in M$ such that $||f(x) - f(y)||_X = ||f||_L d(x,y)$.

Next, there is a different notion of norm attainment. It is known that there is a Banach space $\mathcal{F}(M)$ together with an isometry $\delta: M \to \mathcal{F}(M)$ such that every $f \in Lip_0(M,X)$ extends uniquely to a continuous operator $\overline{f} \in \mathcal{L}(\mathcal{F}(M),X)$ satisfying $\|\overline{f}\| = \|f\|_L$ and $\overline{f} \circ \delta = f$. The Banach space $\mathcal{F}(M)$ is the so called Lipschitz free space over M. We now say that a Lipschitz map $f \in Lip_0(M,X)$ attains its operator norm if there exists an element $\gamma \in \mathcal{F}(M)$ such that $\overline{f}(\gamma) = \|f\|_L$ and $\|\gamma\|_{\mathcal{F}(M)} = 1$.

We will analyze the relationships between the above-mentioned notions of norm attainment. This will lead us quite naturally to the study of the extremal structure of Lipschitz free spaces. In light of the celebrated Bishop-Phelps theorem, we will also analyze when the class of Lipschitz functions which strongly attain their norm is dense in $Lip_0(M, X)$.